Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lin Du, ${ }^{a}$ Yu-Hua Zhang, ${ }^{\text {a }}$
 Rui-Bing Fang ${ }^{\text {b }}$ and Qi-Hua Zhao ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Centre for Advanced Studies of Medicinal and Organic Chemistry, Yunnan University, Kunming 650091, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Science and Engineering, Key Laboratory of Natural Resources and Medicinal Chemistry, Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: qhzhao@ynu.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.021$
$w R$ factor $=0.059$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(glycolato- $\left.\kappa^{2} O, O^{\prime}\right)(1,10-$ phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ copper(II) dihydrate

The title mononuclear complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, is isostructural with its zinc(II) analogue. The Cu atom in the complex exists in a distorted octahedral coordination environment, defined by four O atoms and two N atoms. $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking interactions help to consolidate the crystal packing.

Comment

The chemistry of glycolic acid complexes has grown substantially since the initial report in 1969 (Fischinger \& Webb, 1969). The title complex, (I), is isostructural with its $\mathrm{Zn}^{\text {II }}$ analogue (Gao et al., 2004).

As shown in Fig. 1, the geometry about the six-coordinated $\mathrm{Cu}^{\mathrm{II}}$ atom can be described as a distorted octahedron. The two glycolate ligands act as two bidentate ligands in a distorted cis$\mathrm{CuO}_{4} \mathrm{~N}_{2}$ octahedral geometry, coordinating to the metal ions through their $\mathrm{O}_{\text {carboxy }}$ and $\mathrm{O}_{\mathrm{C}-\mathrm{OH}}$ atoms, forming fivemembered chelating rings. The two carboxy O atoms occupy the pseudo-axial positions, while the two hydroxyl O atoms and the two N atoms of the 1,10-phenanthroline ligand are in a pseudo-plane, with an r.m.s. deviation of $0.1417 \AA$ out of the plane.

The dihedral angle between the two five-membered chelating rings $\left(\mathrm{Cu} 1 / \mathrm{O} 2^{\mathrm{i}} / \mathrm{C} 7^{\mathrm{i}} / \mathrm{C} 8 / \mathrm{O} 3\right.$ and $\left.\mathrm{Cu} 1 / \mathrm{O} 2 / \mathrm{C} 7 / \mathrm{C}^{\mathrm{i}} / \mathrm{O}^{1}{ }^{\mathrm{i}}\right)$ is $81.66(3)^{\circ}$ [symmetry code: (i) $-x, y, \frac{3}{2}-z$]. The $\mathrm{Cu}-$ $\mathrm{O}_{\text {carboxy }}$ distances are relatively short $[2.046$ (1) \AA], while the $\mathrm{Cu}-\mathrm{O}_{\mathrm{C}-\mathrm{OH}}$ bond lengths are longer $[2.163$ (1) \AA] (Table 1).

Hydrogen-bonding interactions between the water molecules and carbonyl groups are observed (Fig. 2 and Table 2). The adjacent 1,10-phenanthroline planes are parallel to each other and the centroid-to-centroid distance between the central aromatic ring and the pyridyl ring of a neighbouring complex is 3.56 (2) \AA.

Received 11 July 2006
Accepted 14 August 2006

Experimental

The title compound was obtained as blue blocks by slow evaporation at room temperature of a water-methanol (1: 2) solution of copper(II) acetate monohydrate $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$, 1,10phenanthroline and glycolic acid in a 1:1:2 molar ratio.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=429.86$	$D_{x}=1.630 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=8.3000(6) \AA$	$\mu=1.30 \mathrm{~mm}^{-1}$
$b=24.534(2) \AA$	$T=273(2) \mathrm{K}$
$c=9.1356(7) \AA$	Block, blue
$\beta=109.660(1)^{\circ}$	$0.28 \times 0.23 \times 0.19 \mathrm{~mm}$

$\beta=109.660(1)^{\circ}{ }^{3}$
$0.28 \times 0.23 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.709, T_{\text {max }}=0.786$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.037 P)^{2} \\
&+0.7037 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

10361 measured reflections 2154 independent reflections 2025 reflections with $I>2 \sigma I$ $R_{\text {int }}=0.017$
$\theta_{\text {max }}=28.3^{\circ}$
$w R\left(F^{2}\right)=0.059$
$S=1.00$
2154 reflections
129 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 2$	$2.0456(9)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.1632(10)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.1334(11)$		
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2$	$160.38(6)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$90.14(4)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$96.13(4)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$92.03(4)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$78.07(6)$	$\mathrm{N} 1^{i}-\mathrm{Cu} 1-\mathrm{O} 3$	$167.07(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	$77.06(4)$		

Symmetry code: (i) $-x, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1WA $\cdots \mathrm{O} 2$	0.83	2.06	$2.8622(19)$	165
${\text { O1 } W-\mathrm{H} 1 W B \cdots \mathrm{O} 1^{\mathrm{ii}}}^{0.83}$	0.83	2.23	$2.992(2)$	153
${\text { O3-H3B } \cdots \mathrm{O}^{1 i i}}^{2}$	$0.86(2)$	$1.79(2)$	$2.6469(14)$	$174(2)$

Symmetry codes: (ii) $-x+1, y,-z+\frac{5}{2}$; (iii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+2$.

The H atoms of the solvent water molecules were located in a difference Fourier map and refined using a riding model, with an $\mathrm{O}-$ H distance restraint of 0.83 (6) \AA. The H atom of the hydroxyl group was located in a difference Fourier map and refined isotropically. H atoms on all C atoms were included in calculated positions and constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
A view of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probablity level. The unlabelled half of the molecule is generated by the symmetry operation $\left(-x, y, \frac{1}{2}-z\right)$.

Figure 2
A partial packing diagram of complex (I), projected down the a axis. Weak intermolecular hydrogen bonds are shown as dashed lines.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Bruker (2002). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Fischinger, A. J. \& Webb, L. E. (1969). J. Chem. Soc. D, pp. 407-408.
Gao, S., Huo, L.-H., Zhang, Z.-Y., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m1278-m1280.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

